ДВС на 8 цилиндров
Из-за габаритов двигатели делаются V-образной компоновки.
Восьмицилиндровый ДВС от Chevrolet:
Возможный порядок работы восьмицилиндрового двигателя современной машины:
- вариант 1–5–4–2–6–3–7–8 — основной;
- принцип 1–8–4–3–6–5–7–2 – другая вариация.
Различие это мнимое и произошло из-за разницы в подсчете цилиндров. В США цилиндр 1 расположен спереди по направлению движения авто, слева, а в европейской системе – справа. Нумерация цилиндров производится в шахматной последовательности, в направлении назад и слева направо, поэтому обе классификации представляют, по сути, одно и то же, что иллюстрирует схема:
Интервал между зажиганием топлива 90 град.
«8» и «16»
Как я писал выше – это считается классическая компоновка. Только второй вариант с «16» или 4–мя клапанами на цилиндр, является более производительным, мощность примерно на 15 – 20 л.с. больше.
Как этого добиваются? По сути, очень просто:
У 8-ми клапанного агрегата, один распределительный вал, который в себе объединяется и впуск и выпуск. То есть и те и другие кулачки, находятся на одном «стержне», если один открывает впуск, то второй находится в противоположном направлении и как бы не работает. Затем они меняются. Здесь небольшая цепь и по сути одна шестерня (или звездочка), фазовращатели на таких моторах применяются крайне редко.
То у 16-ти клапанного варианта, все намного сложнее, но эффективнее. Здесь есть два распределительных вала. Каждый вал работает под свою задачу — есть «впускной» (открывает впускные клапана) и есть выпускной (соответственно выпускные). Усилия распространяются равномерно на два вала, а не на один. Есть такое мнение, что здесь сам клапан немного меньше, чем у «оппонента с одним валом» — возможно, однако нужно сравнивать конкретные модели двигателя.
Зачастую на эти агрегаты устанавливают гидрокомпенсаторы, которые автоматически регулируют тепловой зазор (у восьми клапанного мотора, такое устанавливается крайне редко). ТО есть вам мне нужно регулировать клапана.
Смотрим полезное видео
В итоге из-за увеличенного количества впускных и выпускных отверстий, воздушно-топливная смесь быстрее поступает и быстрее отводится, причем нет излишних механических потерь. Нужно отметить, что на эти варианты зачастую устанавливают фазовращатели, что еще больше повышает эффективность. В итоге и прибавляется мощность в 15 – 20 л.с.
Разновидности клапанов
Затворный клапан Конструкцию с линейным перемещением затвора или шибер (задвижка) часто применяется для трубопроводов. Такой промышленный клапан называется затворным. Он может быть полностью закрыт или открыт. Открытый дает возможность потоку материи проходить по трубопроводу почти беспрепятственно.
Вентильный механизм снабжен вращающимся шпинделем. Когда вращается маховик, шпиндель передвигается относительно резьбы головки. В результате происходит подъем или опускание затвора.
Игольчатый клапан
Игольчатое устройство невелико. По форме рабочая область штока игольчатого устройства напоминает конус, позволяющий без рывков регулировать расход рабочей материи.
Устройство мембранного типа
Клапан мембранного типа выглядит как вентиль, на шпинделе которого (между корпусом и головкой) расположена гибкая мембрана. Под воздействием штока мембрана, перемещаясь, либо регулирует текущее положение механизма, либо полностью его перекрывает. Подвижные составляющие такого механизма не взаимодействуют с потоком жидкости, потому мембрана не нуждается в замене затвора или уплотнительных материалов. Предназначение мембранных устройств — взаимодействовать с жидкостями, содержащими твердые частицы или являющимся носителями агрессивной среды.
Применение обратного клапана
Назначение обратного механизма — предотвратить возвратное продвижение жидкости внутри трубопровода. Известно о существовании двух основных видов обратных клапанов. Они могут быть откидными и подъемными. Первые снабжены шарнирной заслонкой, закрепленной над седлом. Под воздействием потока, идущего со стороны отверстия, заслонка открывается, а жидкость беспрепятственно проникает через клапан. Если поток изменит направление движения, заслонка опустится и закроет отверстие, плотно прижавшись к седлу под давлением жидкости. Подъемная створка функционирует по аналогичному принципу, перемещаясь в вертикально расположенном направляющем цилиндре. Когда поток изменит направление, заслонка опустится и плотно прижмется к седлу.
Тарельчатый механизм
Тарельчатыми называют односедельные клапаны, открывающиеся посредством «кулачков» и рычажков, а закрывающиеся благодаря действию пружин. Автомобилисты используют такие устройства для подачи топлива и воздуха в цилиндры и двигатель автомобиля, а также для выброса использованных газов. Описанный тарельчатый механизм установлен в некоторых видах паровых машин и в паровых турбинах как приспособление для регулирования подачи пара.
Устройство с сильфоном
Сильфонный клапан имеет гофрированную конструкция из металлических материалов. Такое изделие сохраняет прочность и герметичность при неоднократных сжатиях, растяжениях, изгибах. Применяется в трубопроводной арматуре как герметизирующий, силовой элемент.
Применение импульсных устройств
Для защиты от механического разрушения трубопроводов слишком высоким давлением используются импульсные клапаны. Путем автоматического выпуска проходящей среды из систем они понижают силу увеличившегося давления.
Редукционный механизм
Назначение редукционного устройства — понижать давление внутри трубопровода. Величина проходного отверстия варьируется автоматически. Внутри он оснащен перемещающимся штоком и специальным приспособлением, посредством которого может быть изменено положение относительно седла.
Регулирующее приспособление в большинстве случаев изготавливают в виде профилированной детали. В простых моделях урегулированное давление оказывает действие на мембрану, которая закреплена на штоке. При помощи пружины или грузка давление уравновешивается, а его сила изменяется, когда меняется натяжение пружины во время перемещения груза на рычаге. Мембрана, как правило, находится под воздействием давления потока, идущего над или под клапаном. В силовых приводах, в большинстве случаев, нет необходимости.
Четырехходовой клапан
Там, где необходимо регулирование теплоносителя, применяются устройства четырехходового типа. Добиться нужной температуры в системе можно лишь одним способом – смешиванием горячей и холодной среды, получая на выходе нужный результат. Успешное выполнение такого процесса и обеспечивает четырехходовой клапан.
Как работают клапаны в двигателе?
Если Вы читали статью о работе двигателя, то знаете, что существует 4 такта работы мотора:
- впуск,
- сжатие,
- сгорание,
- выпуск.
В современных двигателях на каждый цилиндр приходится 4 клапана: два впускных и два выпускных — они работают попарно — т.е. два впускных клапана открываются одновременно и два выпускных одновременно (но отличное время от времени открытия впускных). Это контролируется распределительным валом. Во время такта впуска, когда цилиндр движется вниз, открывается пара впускных клапанов, чтобы смесь топлива и воздуха могла впрыснуться в камеру сгорания цилиндра. Затем клапан закрывается, цилиндр движется уже наверх, и, следовательно, происходит сжатие смеси. Когда цилиндр достигает верхней точки, происходит взрыв этой смеси (инициируемый свечой в бензиновых двигателях и крайней степенью сжатия в дизельных). Теперь цилиндр из-за возникшего по причине взрыва давления движется вниз, а, когда достигает крайней нижней точки, открывается пара выпускных клапанов, чтобы были выдавлены цилиндром отработавшие газы, когда тот снова начнёт двигаться вверх.
Ничего сложного, не правда ли? Но из чего состоит цепочка работы клапанов, откуда они знают, когда им открываться и закрываться. Увы и ах, но в эру умнейших компьютеров, эта операция контролируется всего лишь какими-то грушевидными отростками на валу, который приводится во вращения от коленчатого вала двигателя. Этот вал называется распределительным или распредвалом в обиходе.
К распредвалу идёт ремень или цепь ГРМ, которая имеет зубцы и предназначен для очень точной передачи оборотов коленчатого вала (который приводится в движение цилиндрами двигателя) распредвалу. На самом распредвале расположены так называемые кулачки, яйцевидные «отростки» на валу, которые и толкают клапаны в нужный момент. И вот как это выглядит:
Распределительный вал, установленный в блоке цилиндров, имеет мелкие металлические нажимные цилиндры (кулачки), расположенные выше самого клапана и металлического толкателя, который находится между клапаном и кулачком. Когда распредвал крутится, крутятся и кулачки, и когда выступающая их часть поворачивается вниз, то она толкает толкатель, который передаёт толчок клапану, который и открывается. А когда кулачок перестаёт нажимать на толкатель, пружина клапана позволяет ему подняться обратно вверх, чтобы закрыться. Это называется подвесной системой клапанов (OHV).
Расположение — цилиндр — двигатель
Расположение цилиндров двигателя в силовой части газомоторного компрессора V-образное или однорядно-вертикальное. Рабочий процесс осуществляется по двух — или четырехтактному принципу действия.
По расположению цилиндров двигателя газомоторкомпрессоры подразделяются на угловые, с вертикальными или V-образными двигателями.
Мотокомпрессоры с V-образным расположением цилиндров двигателя в зависимости от производительности и давления выполняются с числом кривошипов от одного до пяти. Так выполнен мотокомпрессор, показанный на фиг. Его продувочный насос устроен в крейцкопфной полости компрессора, для чего крейцкопф дополнен поршнем.
Газовые двигатели-компрессоры с V-образным расположением цилиндров двигателя, в зависимости от производительности и давления, бывают с числом кривошипов от одного до четырех.
У мотокомпрессоров с V-образным расположением цилиндров двигателя против каждого колена находятся три цилиндра, из которых один двойного действия принадлежит компрессору и два — двигателю. Так выполнен мотокомпрессор, показанный на рис. IV.26. Его продувочный насос устроен в крейцкопфной полости компрессора, для чего корпус крейцкопфа дополнен поршнем.
Число шатунных шеек определяется числом и расположением цилиндров двигателя или рабочих органов технологической машины. Число коренных шеек обычно больше числа шатунных на одну. Однако повышением жесткости вала можно уменьшить число коренных шеек, исключив коренные шейки между частью шатунных.
Число колен вала у мотокомпрессоров с V-образным расположением цилиндров двигателя в зависимости от производительности и давления встречается от одного до пяти. Каждое колено связано с тремя поршнями, из которых один двойного действия принадлежит компрессору и два двигателю.
Выбор конфигурации коленчатого вала определяется числом и расположением цилиндров двигателя, а также динамическими показателями: уравновешенностью и равномерностью чередования вспышек.
Форма коленчатого вала зависит от числа и способа расположения цилиндров двигателя.
Величина приведенного момента инерции маховика зависит от числа id расположения цилиндров двигателя, массы движущихся частей и числа тактов.
Форма коленчатого вала ( табл. 4) зависит от числа и расположения цилиндров двигателя, принятой равномерности чередования вспышек и желаемой уравновешенности двигателя, от числа коренных шеек вала.
Такие компрессоры выполняют угловыми с горизонтальным расположением компрессорных цилиндров двойного действия и вертикальным или У-образным расположением цилиндров двигателя. Изменение производительности мотокомпрессора, как и компрессора с приводом от отдельного двигателя, производят изменением частоты вращения вала.
Коленчатые валы имеют коренные шейки, вращающиеся в подшипниках машины, шатунные шейки, связанные с шатунами, и щеки, связывающие. Число шатунных шеек определяется числом и расположением цилиндров двигателя или рабочих органов технологической машины. Число коренных шеек обычно больше числа шатунных на одну. Однако повышением жесткости вала можно уменьшить число коренных шеек, исключив коренные шейки между частью шатунных.
Изменение суммарного крутящего момента двигателя no — углу поворота коленчатого вала может быть представлено1 в виде кривой. Форма этой кривой определяется числом и расположением цилиндров двигателя.
Однако при небольших расходах газа на тупиковых газопроводах целесообразно применение поршневых компрессоров в силу их более высокой экономичности. В последнем случае широкое распространение получили мотокомпрессоры, у которых в одном агрегате объединены компрессор и двух — или четырехтактный газовый двигатель внутреннего сгорания. Мотокомпрессор имеет У-образное расположение цилиндров двигателя. На каждом колене вала расположены два шатуна двигателя и один шатун компрессора. Цилиндр компрессора с поршнем двойного действия выполнен горизонтально. К преимуществам такой компоновки следует отнести высокий КПД газового двигателя, компактность, низкие затраты на фундамент.
Разница между V16 и W16
Шестнадцатицилиндровые двигатели всегда были символом мощности и роскоши в автомобиле, от Cadillacs и других роскошных моделей 1930-х годов до современных дорожных ракет, таких как Bugatti Veyron. Первоначально 16-цилиндровые двигатели были выполнены в V-образной конфигурации, но в последние годы автомобильные инженеры разработали W-конфигурацию для восьми-, 12- и 16-цилиндровых высокопроизводительных двигателей.
V Двигатели
Двигатель V-типа относится ко времени Первой мировой войны, но двигатели V8, представленные Ford в 1932 году, популяризировали автомобильный двигатель V-типа на все времена. Типичный V8 состоит из двух рядных рядов по четыре цилиндра в каждом с смещением от 60 до 120 градусов дуги. Это делает двигатель короче, но шире, чем рядные 8-цилиндровые двигатели, что требует большего объема моторного отсека. V8 также требует двух головок цилиндров и сложного впускного коллектора для равномерного распределения топлива. Конструкции двигателей V16 1930-х годов и позже следовали схеме V8, но с двумя встроенными рядами по восемь цилиндров в каждом. Двигатели V16 длинные и требуют длинного моторного отсека, что затрудняет их установку в современных автомобилях.
W Engine’s Parent
Конфигурация двигателя W была разработана на основе двигателя VR6, разработанного Volkswagen в конце 1980-х годов для комплектации рабочих характеристик на автомобилях среднего класса, таких как Jetta, Passat и модели Audi начального уровня. VR6 имеет два ступенчатых ряда по три цилиндра, причем ряды смещены на 15 градусов в одном блоке двигателя. Цилиндры покрыты одной головкой, имеющей отдельные распределительные валы впускного и выпускного клапанов. В результате компактный двигатель короче и уже традиционного V6, но такой же мощный, идеально подходит для поперечной установки в автомобиле.
Введите “W”
Когда Volkswagen в 1990-х годах вышел на рынок роскошных автомобилей с новыми моделями Audi и приобретением Rolls Royce/Bentley и Bugatti, инженеры Volkswagen захотели компактную мощность. Они разработали конфигурацию W, соединив два двигателя VR на коленчатом валу. Они создали W8, объединив два блока VR4 под углом 72 градуса, и W12, объединив два блока VR6 под одним углом. Для W16 инженеры объединили два блока VR8 на коленчатом валу. Эти двигатели W получили название, потому что линии осей для четырех рядов смещенных цилиндров в двух блоках VR образуют букву W, так же как линии осей из двух рядов линейных цилиндров в V8 образуют букву V.
В автомобили
По состоянию на июнь 2011 года Volkswagen является единственным производителем автомобилей, который использует двигатели W в дорожных автомобилях. Он установил W16 в Bugatti Veyron, W8 в VW Passat и W12 в некоторых моделях Audi, Rolls и Bentley. Что касается V16, не существует современных серийных автомобилей, использующих этот тип двигателя, хотя итальянская венчурная фирма в 1995 году выпустила Cizeta-Moroder V16T в ограниченное производство с поперечно установленным двигателем V16. Но он сделал только 10 из 400 000 долларов, прежде чем сложить. Однако конфигурация V16 далеко не умерла. Используется в тепловозных, судовых и промышленных дизельных двигателях.
Что такое двигатель DOHC
Что такое двигатель DOHC (два верхних распредвала) — является усовершенствованной версией SOHC, благодаря наличию двух распредвалов получилось увеличить количество клапанов на цилиндр (обычно 4 клапана), на данный момент используется два типа компоновки:
- два клапана на цилиндр — расположение клапанов параллельно друг другу, на каждую сторону по одному валу;
- четыре и более клапанов на цилиндр — клапана установлены параллельно, на один вал 4-х цилиндрового мотора может приходиться от 2 до 3 клапанов (двигатель VAG 1.8 20V ADR).
Наиболее широкое распространение получили моторы DOHC благодаря возможности отдельно настроить фазы впуска и выпуска, а также увеличения количества клапанов без перегрузки на кулачки. Теперь турбированные двигатели, исключительно имеют компоновку с двумя и более распредвалами, обеспечивающие более высокий КПД.
DOHC с двумя клапанами на цилиндр
Сегодня такие компоновки, практически, не используются. В 70-х годах ХХ века двухвальный восьмиклапанный мотор назывался 2OHC, и применялся в спортивных авто, таких как Alfa Romeo, раллийный “Москвич-412” на базе ГБЦ типа SOHC.
DOHC с четырьмя клапанами на цилиндр
Широко распространенная компоновка, которая нашла свое место под капотом тысячи автомобилей. Благодаря двум распредвалам появилась возможность установить 4 клапана на цилиндр, а значит повысить КПД за счет улучшенного наполнения и продувки цилиндра.
Принцип работы
Для того чтобы была обеспечена правильная работа двух распределительных валов, использовали специальный зубчатый ремень – это такое же устройство с набором шестеренок или цепь. Из этих 2 способов привода ремень считается более экономичным, поэтому его выбирает большинство автовладельцев. Он обладает рядом преимуществ:
- работает тихо;
- не обязательно постоянно его смазывать;
- стоит недорого.
Среди недостатков ременного привода самым главным считается то, что при обрыве он может натолкнуться на поршень. Из-за этого оба элемента разлетаются и могут существенно повредить гильзу и блок цилиндра. В этом случае не получится отделаться мелким ремонтом, поэтому специалисты рекомендуют проверять состояние детали регулярно.
Если в качестве привода использована цепь, то она издает гораздо больше шума, но будет намного надежнее. Минус этого устройства – растяжение со временем. Чтобы устранить этот недостаток, следует приобрести специальные механизмы, которые выполняют автоматическое натяжение цепи. Также понадобится установить герметичный картер для полноценной смазки.
Регулирование скорости работы пневмоцилиндров
Регуляторы расхода (дроссели) с обратным клапаном позволяют осуществлять изменение расхода воздуха при его движении в одном направлении и не ограничивают расход в противоположном направлении. Эту особенность можно использовать для задания разной скорости движения поршня пневмоцилиндра в прямом и обратном направлении.
Возможны две разные схемы расположения дросселей с обратным клапаном при регулировании скорости хода штока пневмоцилиндра:
- регулирование расхода при подаче воздуха в цилиндр (при этом расход воздуха на сброс не ограничивается);
- регулирование расхода при сбросе воздуха из цилиндра (при этом расход воздуха на подачу не ограничивается).
Рассмотрим эти варианты последовательно.
Регулирование расхода при подаче воздуха в цилиндр
При использовании данного способа регулирования сбрасываемый воздух будет выходить из пневмоцилиндра быстрее подаваемого, поскольку использование дросселей позволяет только уменьшить расход воздуха, но не увеличить его. Это приводит к тому, что в одной из камер цилиндра давление оказывается близким к атмосферному. Данная ситуация показана на рисунке 5: порт P1 соединён с атмосферой, в порт P2 осуществляется подача сжатого воздуха, шток цилиндра движется влево.
Рисунок 5 – Регулирование расхода при подаче воздуха в цилиндр
Такое распределение давлений внутри цилиндра имеет следующие последствия:
1. Ухудшается восприятие цилиндром нагрузки в направлении движения штока. Это происходит потому, что давление в камере цилиндра, в сторону которой осуществляется движение, близко к атмосферному, и оно не оказывает сопротивления движению в данном направлении.
2. При небольших скоростях шток начинает двигаться рывками. Дело в том, что расход поступающего в цилиндр воздуха ограничен, а объём камеры увеличивается по мере движения штока. Совместно с различными значениями силы трения покоя и силы трения скольжения это приводит к колебаниям давления внутри цилиндра и неравномерному движению штока.
3. Становится невозможной остановка штока цилиндра в промежуточных положениях с помощью клапанов 5/3 центр закрыт. Как видно на рисунке 5, одна из камер цилиндра находится под давлением, а вторая — нет. Поэтому при переводе распределительного клапана 5/3 центр закрыт в среднее положение неизбежно продолжение движения цилиндра до тех пор, пока давление в обеих камерах не уравновесится.
Регулирование расхода при сбросе воздуха из цилиндра
При использовании данного способа регулирования подача воздуха в цилиндр осуществляется с максимальным расходом, а расход воздуха при сбросе в атмосферу ограничен, т. е. воздух может поступать в цилиндр быстрее, чем выходить из него. При данной схеме регулирования давление в сбросной камере пневмоцилиндра сохраняется во время движения штока (рисунок 6, камера порта P1).
Рисунок 6 – Регулирование расхода при сбросе воздуха из цилиндра
Такой способ регулирования имеет следующие особенности:
1. Пневмоцилиндр хорошо воспринимает нагрузку как сонаправленную с движением штока, так и имеющую противоположное направление, поскольку обе камеры цилиндра находятся под давлением.
2. По сравнению с предыдущей схемой регулирования становится возможным достижение более медленных скоростей движения при сохранении плавности хода штока.
3. Упрощается остановка штока в заданном положении. Так как обе камеры цилиндра находятся под давлением, при их перекрытии цилиндр быстро достигает равновесного состояния. Это существенно уменьшает расстояние, пройденное штоком от момента перекрытия портов цилиндра до полной остановки штока.
Из этого следует, что регулирование расхода при сбросе воздуха из цилиндра является предпочтительным
по сравнению с регулированием расхода при подаче воздуха в цилиндр.
Что ещё входит в систему турбонаддува
Турбина — сложный агрегат, инженерам потребовалось несколько десятилетий, чтобы довести систему до ума. Только на первый взгляд решение компенсировать потери КПД за счёт выхлопных газов кажется простой. Даже после создания устройства у него долгое время наблюдались определённые проблемы.
Например, не удавалось решить проблему турбоямы — задержки после нажатия на педаль газа и запуском ротора. Решение нашлось в виде использования двух клапанов. Один из них использовался для вывода излишек воздуха, а второй предназначался для выхлопных газов. Кроме того, современные турбины имеют изменённую геометрию лопаток, что серьёзно их отличает от подобных устройств второй воловины XX столетия.
Можно выделить ещё одну проблему, которая заключалась в излишней детонации — с ней тоже успешно справились современные инженеры. Проблема заключалась в том, что температура в рабочих секторах цилиндров резко увеличивалась во время нагнетания воздуха, особенно в последней стадии такта. Решение нашлось в установке интеркулера (промежуточного охладителя воздуха).
Интеркулер — устройство для охлаждения наддувочного воздуха. Он выполняет сразу две функции — препятствует детонации и не даёт уменьшиться плотности воздуха. В результате удалось сохранить работоспособность всей системы.
Также стоит отметить и другие важные составляющие турбины.
Регулировочный клапан. Отвечает за поддержание заданного уровня давления, излишки давления поступают в приёмную трубу.
Перепускной клапан. Используется для вывода излишних воздушных масс обратно во впускные патрубки — это нужно для снижения мощности при её избытке.
Стравливающий клапан. Если дроссель закрывается и нет датчика массового расхода воздуха, клапан будет возвращать излишки воздуха обратно в атмосферу.
Патрубки. Герметичные отрезки трубы. Одни используются для подачи воздуха, вторые для подачи смазочного масла.
Выпускные коллекторы. Должны быть совместимы с турбокомпрессором.
Недостатки, проблемы и надёжность 3-цилиндровых двигателей
Совершенно
очевидно, что атмосферный 3-цилиндровый двигатель с объёмом 1,0, 1,2
или 1,4 литра годится разве что для велосипеда, поэтому такие двигатели
оснащают турбонаддувом, в результате чего они обладают нереальной для
своего объёма и количества цилиндров мощностью.
Например,
1,0-литровый 3-цилиндровый турбированный двигатель Ford EcoBoost
обладает мощностью 125 лошадиных сил. То есть этот двигатель постоянно
работает на переделе своих возможностей, что естественно не в лучшую
сторону отражается на его ресурсе.
Кроме
этого, если раньше малолитражными 3-цилиндровыми двигателями оснащали в
основном маленькие городские автомобили, то сейчас ими оснащают даже
среднеразмерные кроссоверы, ярким примером чего является Peugeot 5008,
который в базовой комплектации оснащается 1,2-литровым 3-цилиндровым
турбированным двигателем мощностью 130 лошадиных сил.
К сведению, масса автомобиля Peugeot 5008 составляет 1,5 тонны, а теперь представьте, какую нагрузку испытывают детали его крохотного двигателя пытаясь сдвинуть с места и разогнать этот совсем не лёгкий автомобиль. Представили? Думаю, многие из вас уже поняли, что такого двигателя в таком автомобиле хватит только на гарантийный срок, после которого он начнёт рассыпаться.
Немало важным фактом является и то, что поскольку кривошипы на коленчатом вале в 3-цилиндровых двигателях расположены под углом 120° относительно друг друга, то такие двигатели хуже всего сбалансированы, что в свою очередь ускоряет износ их деталей. Конечно же, инженеры автопроизводителей нашли решение этой проблемы, оснастив 3-цилиндровые двигатели сложной системой балансиров, но это только усложнило их конструкцию и как следствие стало источником других проблем.
Так что же делать и неужели совсем не стоит покупать автомобили, оснащённые 3-цилиндровыми двигателями?
От чего зависит нумерация цилиндров двигателя
Тем не менее, важно знать, что каким бы ни была компоновка двигателя и расположение цилиндров, в цилиндре № 1 – главный цилиндр, всегда располагается свеча № 1. Естественно, это порядок, в котором пронумерованы цилиндры любого двигателя. От чего зависит расположение и нумерация цилиндров двигателя:
От чего зависит расположение и нумерация цилиндров двигателя:
Естественно, это порядок, в котором пронумерованы цилиндры любого двигателя. От чего зависит расположение и нумерация цилиндров двигателя:
- тип привода: передний или задний;
- тип двигателя: рядный или V-образный;
- способ установки двигателя: поперечный или продольный;
- направление вращения двигателя: по или против часовой стрелки.
Расположение цилиндров в многоцилиндровых двигателях, выглядит следующим образом:
- вертикально – то есть в один ряд, без угловых отклонений;
- наклонно – под углом 20°;
- V- образно – в два ряда. Углы между рядами могут быть 90 или 75 градусов;
- оппозитно (горизонтально) – угол между цилиндрами равен 180°. Такое расположение цилиндров применяется в двигателях для автобусов, что позволяет размещать двигатель под полом салона, освобождая полезную площадь.
Второй претендент – выпускной коллектор
Ему также отводится немаловажная роль по отводу сгоревших газов. После закрытия впускных клапанов начинается сжимание топлива с поджиганием свечой. Затем происходит мини хлопок, отправляя вниз поршни. Это в свою очередь открывает выпускные клапана, отводя сгоревшие вещества.
Газы должны выходить после клапанов в глушитель. Их сбором из цилиндров занимается выпускной коллектор. Широкая его часть подсоединена к головке блока. После прохождения по трубам, газы собираются в одном месте. Их дожигание осуществляется благодаря катализатору. Затем уже идет глушитель, потом только выход в атмосферу.
Хочется отметить, гашение происходит не только отработанных газов, но и выхлопного звука.
Особенностью функционирования выпускного коллектора является работа с высокими температурами. Кстати, выхлоп часто разогревается до 950 градусов. Ввиду этого используется тугоплавкий металл, выдерживающий высокие тепловые показатели. В отводящий коллектор обычно встраивают датчик. Который регулирует содержание кислорода, также других выхлопных газов.
Горизонтальное расположение — цилиндр
Горизонтальное расположение цилиндров обеспечивает малую высоту танка.
Достоинства горизонтального расположения цилиндров состоят в удобстве наблюдения и обслуживания, а при ремонте — в доступности механизма движения.
Схемы одноступенчатых поршневых компрессоров. |
При горизонтальном расположении цилиндра, особенно большого диаметра, происходит неравномерное одностороннее изнашивание поршня под действием силы тяжести. Это приводит к необходимости уменьшать скорость движения поршня.
При горизонтальном расположении цилиндров такая операция не представляет особых затруднений, но при вертикальном требует почти полной разборки двигателя.
При горизонтальном расположении цилиндра учитывают напряжения, возникающие под действием веса кон-сольно расположенных частей.
При горизонтальном расположении цилиндра поршень опирается на его зеркало х / 3 нижней части боковой поверхности. Эту часть поверхности обрабатывают по посадке Д второго класса точности, а у верхних 2 / 3 боковой поверхности поршня уменьшают радиус на 0 5 — 0 8 мм для предохранения поршни от заеданий при его износе.
При горизонтальном расположении цилиндров гидропривода ( рис. 10, в) компрессор становится наиболее компактным. Силы тяжести от массы жидкости в этом случае действуют в направлении, перпендикулярном поршневым усилиям, что, как показывает опыт, не всегда хорошо сказывается на поведении мембран в машинах большой производительности. Видимо, применения этой схемы, несмотря на преимущества оппозитного расположения цилиндров и хорошую уравновешенность инерционных сил, все же следует избегать для компрессоров с мембранами большого диаметра, но с успехом можно применять для компрессоров с малыми и средними диаметрами мембран.
Двигатели с горизонтальным расположением цилиндров имеют перспективы применения на грузовых автомобилях, автобусах и колесно-гусеничных машинах специального назначения, так как при этом можно расположить кабину водителя непосредственно над двигателем, увеличить полезную площадь платформы, улучшить обзорность автомобиля и его управляемость.
Схема насосной установки с воздушными колпаками. |
Поршневой насос с горизонтальным расположением цилиндра, а воздушные колпаки обычного типа, в которых перекачиваемая жидкость находится в контакте с сжимаемым воздухом.
Цилиндрическая сушилка для хлопчатобумажных тканей. |
Сушилки выполняются с вертикальным и горизонтальным расположением цилиндров. Материал огибает цилиндры, соприкасаясь с горячей поверхностью. На рис. 6 — 28 показана цилиндрическая сушилка для сушки хлопчатобумажных тканей.
Так как при горизонтальном расположении цилиндра, в особенности при большом его диаметре, происходит неравномерное одностороннее изнашивание поршня, то рекомендуется придавать компрессору вертикальную форму. Выполняются современные воздуходувки грандиозных размеров производительностью до 1000 м3 / мин и более.
Схема поршневого насоса. |
Что такое топливно-воздушная смесь?
Топливно-воздушная(топливовоздушная) смесь — это мелкодисперсный состав включающий атмосферный воздух, забор которого осуществляется из атмосферы, и горюче-смазочных материалов, предварительно залитых в бензобак автомобиля. В качестве топлива может использоваться как бензин, солярка так и сжиженный газ. Исправный топливный насос высокого давления должен обеспечивать оптимальную топливовоздушную смесь с соотношение топлива и воздуха 1:14,7, то есть на одну часть топлива необходимо 14,7 частей воздуха.
Читать также: Автомагнитола с android auto
Перед тем как соединиться во впускном коллекторе автомобиля, эти составляющие предварительно проходят обязательную фильтрацию. Горюче-смазочные материалы очищаются в топливном фильтре, а фильтрация воздуха осуществляется через воздушный фильтр.